Academic Tutorials

English | French | Portugese | German | Italian
Home Advertise Payments Recommended Websites Interview Questions FAQs
News Source Codes E-Books Downloads Jobs Web Hosting

Networking Tutorial
Networking Introduction
Networking Topology
Networking Hardware Connections
Networking TCP/IP Ports
Networking Protocol Levels
Networking Data Link Layer
Networking Protocol Categories
Networking Repeaters
Networking ARP Address
Networking Basic Addressing
Networking Internet Protocol
Networking Transport
Networking UDP
Networking ICMP
Networking Hardware Cabling
Networking Wireless Media
Networking Outside Connections
Networking Ethernet
Networking Token Ring
Networking ARC net
Netwqrking Apple Talk
Networking FDDI
Networking IPX/SPX
Networking NetBEUI
Networking Apple Talk Protocols
Networking SNA
Networking Others
Networking Simple Routing
Networking More Complex Routing
Networking IP Masquerading

HTML Tutorials
HTML Tutorial
XHTML Tutorial
CSS Tutorial
TCP/IP Tutorial
CSS 1.0
CSS 2.0
XML Tutorials
XML Tutorial
XSL Tutorial
XSLT Tutorial
DTD Tutorial
Schema Tutorial
XForms Tutorial
XSL-FO Tutorial
XML DOM Tutorial
XLink Tutorial
XQuery Tutorial
XPath Tutorial
XPointer Tutorial
RDF Tutorial
SOAP Tutorial
WSDL Tutorial
RSS Tutorial
WAP Tutorial
Web Services Tutorial
Browser Scripting
JavaScript Tutorial
VBScript Tutorial
DHTML Tutorial
HTML DOM Tutorial
WMLScript Tutorial
E4X Tutorial
Server Scripting
ASP Tutorial
PERL Tutorial
SQL Tutorial
ADO Tutorial
Apple Script
PL/SQL Tutorial
SQL Server
.NET (dotnet)
.Net Mobile
C# : C Sharp
SVG Tutorial
Flash Tutorial
Media Tutorial
SMIL Tutorial
Photoshop Tutorial
Gimp Tutorial
Gnuplot Programming
GIF Animation Tutorial
Scientific Visualization Tutorial
Web Building
Web Browsers
Web Hosting
W3C Tutorial
Web Building
Web Quality
Web Semantic
Web Careers
Weblogic Tutorial
Web Site Hosting
Domain Name
Java Tutorials
Java Tutorial
JSP Tutorial
Servlets Tutorial
Struts Tutorial
EJB Tutorial
JMS Tutorial
JMX Tutorial
Programming Langauges
C Tutorial
C++ Tutorial
Visual Basic Tutorial
Data Structures Using C
Assembly Language
Forth Programming
Lisp Programming
Data Warehousing
CGI Programming
Emacs Tutorial
Soft Skills
Communication Skills
Time Management
Project Management
Team Work
Leadership Skills
Corporate Communication
Negotiation Skills
Database Tutorials
Operating System
Software Testing
SAP Module
Business Warehousing
SAP Basis
Material Management
Sales & Distribution
Human Resource
Customer Relationship Management
Production and Planning
Networking Programming
Corba Tutorial
Networking Tutorial
Microsoft Office
Microsoft Word
Microsoft Outlook
Microsoft PowerPoint
Microsoft Publisher
Microsoft Excel
Microsoft Front Page
Microsoft InfoPath
Microsoft Access
Financial Accounting
Managerial Accounting
Network Sites

Simple Routing

Previoushome Next

This section will explain routing in simple terms with some simple standard rules.


There may be exceptions to these rules, but for introductory purposes we will keep the first example simple. Please be aware, that the examples in this section are working examples, but more complexity may be added when a larger network is considered, and multiple data routes become available.

Each network interface card (NIC) has a specific address which is an IP address or number. When data is sent between two computers, the data must be sent in a package that has the address of the intended receiver (IP) on it. It is like an envelope (ethernet) with the sender's and recipient's address on it. There is somewhat of a difference, however. When the computer intends to send a packet, it first checks its routing table to see if the intended data must be sent through a gateway. Many computers only have a simple routing table, which is built from the network mask and the gateway information entered, when you set your computer up to do networking. The computer, when set up for networking, must be assigned an IP address, netmask, and default gateway. This may be done manually or done automatically using Dynamic Host Configuration Protocol (DHCP) to assign this information to the computer when it boots. DCHP is described in another section. If the computer determines that the packet must be sent to a gateway, it puts it in a special packet (ethernet) for that gateway, with the actual recipient's address wrapped inside.

In the above paragraph, data packets are equated to a letter with an envelope. For this type of thinking, the envelope would be similar to the ethernet, SLIP, or PPP packet which encapsulates the IP packet. The IP packet and its encapsulated data would similar to a letter. Here's generally what happens when a package is sent:

The sending computer checks the IP part of the package to see the sender's IP address, and based on the address and instructions in its routing table will do one of the following:

  1. Send the packet to the ethernet address of the intended recipient. The following will happen:
    1. The ethernet card on the receiving computer will accept the packet.
    2. The other network levels (IP, TCP) will open the packet and use it according to filtering and other programming instructions.
  2. Send the packet to the ethernet address of a router, depending on the instructions in the routing table.
    1. The ethernet card on the router will accept the packet.
    2. The IP level of the router will look at the packet's IP address and determine according to its routing table where to send the packet next. It should send it to another router or to the actual recipient.
    3. The router will encapsulate the IP packet in another ethernet packet with the ethernet address of the next router or the intended recipient.
    4. Router hops will continue until the packet is sent on a network where the intended recipient is physically located unless the packet expires.
    5. The ethernet card on the receiving computer will accept the packet.
    6. The other network levels (IP, TCP) will open the packet and use it according to filtering and other programming instructions.


Lets say you enter an IP address of and a netmask of This means you are on the network (I show it as 10.1.x.x, the X's mean don't care conditions). The machine's IP address and netmask, together define the network, that it's NIC is on. Therefore any machine that fits in the address range provided under 10.1.x.x can be accessed directly from your NIC, and any that are not in this number range, such as cannot be accessed directly and must be sent to a gateway machine since it is on another network. Typically most machines will use their netmask to make this determination which means if the address does not match their known network, the package will be sent to that machine's default gateway in a special package meant for a router. It works similar to a post office. When you send a letter in your town, you put it in the local slot. It can be delivered to someone else in your town (network), but if you are sending to another town (network), you put the letter in the out of town slot (default gateway), then the mail personnel put it in a special container or box and send it to a main town (gateway), which then decides where to send it based on its address. Although this simple network and default gateway may be common, specific computers or gateways can have much more complex rules for routing that allow exceptions to this example.

Please be aware that in order to be forwarded, data packets must be addressed to a router. They cannot just be sent to the recipient's address out to a network. The router does not pick packets off the network and forward them. If a packet is sent on a network and a valid recipient is not on that network, there will be no response. This will be demonstrated in the next section where a subnetwork will be described.

To keep routing simple, most networks are structured as shown below. Generally, the higher networks are 10.x.x.x, then the next are 10.0-254.x.x, then 10.0-254.0-254.x. The number 10 is used as an example Class A network. This numbering scheme keeps routing simple and is the least confusing but networks can be set up in other ways. In the diagram below, only gateways and their networks are shown.

Typical Network Structure

In my simple network example below I vary from convention and make network 192.168.2.x be below network 192.168.1.x. causing traffic between the internet and 192.168.2.x to go through the network 192.168.1.x. Normally the network 192.168.1.x would be 192.168.x.x, but this will show you that there can be many variants that will work as long as you have thought your layout through well, and set your routing tables up in your gateways correctly.

Small Network

The boxes labeled A and B must be gateways or routers in order for anyone on networks 192.168.2.x or 192.168.1.x to talk to any other network or internet. The boxes labeled S1 through S6 are stations which could be workstations or servers providing services like BOOTP, DHCP, DNS, HTTP, and/or file sharing such as NFS or Samba. The gateways may also provide these services. These stations may combine any combination of server or workstation function. The reasons for putting the various services on separate machines is because of security concerns and the ability of a given machine to handle specific demand. Typically, the computer that is connected directly to the internet, would be a firewall and provide no other services for security reasons. For example, it is not a good idea to provide TFTP services on a machine that you want to have high security. This is why, depending on the security needs of the company or individual along with the relative amount of each service to be provided, various servers are set up with limited functionality.

The machine S6 in the diagram above has the following characteristics:

IP Address:

In Linux, the "ifconfig" command is used to configure the NIC and the command "route" is used to set up routing tables for that machine. Please note that in Redhat Linux, the GUI interface programs "netconf" and "linuxconf" may be used to set this up also. These GUI interface programs will set these changes up to be permanent by writing them to files that are used to configure network information. Changes made with "route" without adding the changes to permanent files will no longer be valid when you reboot the machine. The command "ifconfig eth0 netmask" will set the NIC card up with its address and network number. You can type "netconfig", then select "basic host information" and do the same thing. The command "route add -net default gw dev eth0" will add the route required for this computer for its gateway. This can be done using "ifconf" by selecting "routing and gateways" and "defaults", then setting the address of the default gateway, and enabling routing. Please be aware that various versions of Linux have different means of storing and retrieving network and routing information and you must use the tools that come with your system or learn it well enough to determine what files to modify. On Redhat 6.1 the file "/etc/sysconfig/static-routes" can be modified to make your route changes permanent, but this does not apply to your default route. Other files are "/etc/sysconfig/routed" and "/etc/sysconfig/network". Other files include "/etc/gateways", "/etc/networks", "/proc/net/route", "/proc/net/rt_cache", and "/proc/net/ipv6_route". The file "/etc/sysconfig/network-scripts" is a script file that controls the network setup when the system is booted.

If you type "route" for this machine, the routing table below will be displayed:

Destination Gateway Genmask Flags Metric Ref Use Iface * UH 0 0 0 eth0 * U 0 0 0 eth0 * U 0 0 0 lo
default UG 0 0 0 eth0

Here is a simple explanation of routing tables and their purpose. All computers that are networked have a routing table in one form or another. A routing table is a simple set of rules that tell what will be done with network packets. In programming language it is easiest to think of it as a set of instructions, very similar to a case statement which has a "default" at its end. If can also be thought of as a series of if..then..elseif..then..else statements. If the lines above are labeled A through C and a default (the last line), an appropriate case statement is: (Don't count the header line)

    case A: send to me;break;
    case B: send to my network;break;
    case C: send to my local interface;break;
    default: send to gateway

An appropriate if statement is:

if (address=me) then send to me;
elseif (address=my network) then send to my network;
elseif (address=my local) then send to my local interface;
else send to my gateway;

In everyday terms this is similar to a basic decision process. Imagine you are holding a letter. If it is addressed to you, you keep it, if it is addressed to someone in your town, you drop it in the local slot at the post office, but if it is addressed to someone out of town, you would drop it in the out of town slot.

Note how the routing table is arranged. It is arranged from the most specific to the least specific. Therefore as you go down the table, more possibilities are covered. You will notice the first Genmask is and the last is There can be no doubt that the last line is the default. The genmasks between the start and the end have a decreasing number of least significant bits set.

The above default routing table may be added manually with the command:

route add -net default gw dev eth0

The routing table for machine B, the gateway for the network is as follows.

Destination Gateway Genmask Flags Metric Ref Use Iface * UH 0 0 0 eth0 * UH 0 0 0 eth1 UG 0 0 0 eth0 * U 0 0 0 eth0 UG 0 0 0 eth1 * U 0 0 0 eth1 * U 0 0 0 lo
default UG 0 0 0 eth0

The Iface specifies the card where packets for this route will be sent. The address of eth1 is and eth0 is The NIC card addresses could have easily been switched. Line 1 (above) provides for the eth0 address, while line 2 provides for the address of eth1. Lines 3 and 4 are the rules for traffic going from network to network which will be sent out on NIC eth0. Lines 5 and 6 are the rules for traffic going from network to network which will be sent out NIC eth1. This may seem confusing, but please note the first value on lines 3 and 4 is which the header indicates as the destination of the packet. Don't think of it as source! The last line is the default line which specifies that any packet not on one of the networks or will be sent to the gateway This is how the internet access can be attained, though IP masquerading will probably be used. The flags above mean the following:

  • U - Route is up
  • H - Target is a host
  • G - Use gateway

There are other flags, you can look up by typing "man route". Also the metric value above, indicating the distance to the target, is not used by current Linux kernels but may be needed by some routing daemons. Please note that if route knows the name of the gateway machine, it may list its name rather than the IP address. The same is true for defined networks. Networks may be defined in the file "/etc/networks" as in the example:


The routing table above can be set up with the following commands.

route add -net netmask gw dev eth0
route add -net netmask gw dev eth1

Again be aware that you are specifying destination networks here and the ethernet device and address the data is to be sent on.
In Redhat Linux this can be specified using "netconf" by selecting "routing and gateways" and "other routes to networks" and entering the following:

Network Netmask Gateway

Alternatively in Redhat Linux, you can add the following two lines to the file "/etc/sysconfig/static-routes":

eth0 net netmask gw
eth1 net netmask gw

The commands to delete the above routes with route are:

route del -net netmask gw dev eth0 route del -net netmask gw dev eth1

Be aware, the program route is very particular on how the commands are entered. Even though it may seem that you entered them as the man page specifies, it will not always accept the commands. I don't know if this is a bug or not, but if you enter them as described here with the network, netmask, gateway, and device specified, it should work. The slightest misnomer in network name, netmask, gateway, device, or command syntax and the effort will fail.

Be the first one to comment on this page.

  Networking Tutorial eBooks
More Links » »
 Networking Tutorial FAQs
More Links » »
 Networking Tutorial Interview Questions
More Links » »
 Networking Tutorial Articles
More Links » »
 Networking Tutorial News
More Links » »
 Networking Tutorial Jobs
More Links » »

Share And Enjoy:These icons link to social bookmarking sites where readers can share and discover new web pages.
  • blinkbits
  • BlinkList
  • blogmarks
  • co.mments
  • connotea
  • digg
  • Fark
  • feedmelinks
  • Furl
  • LinkaGoGo
  • Ma.gnolia
  • NewsVine
  • Netvouz
  • RawSugar
  • Reddit
  • scuttle
  • Shadows
  • Simpy
  • Smarking
  • Spurl
  • TailRank
  • Wists
  • YahooMyWeb

Previoushome Next

Keywords: Simple Routing, Networking Tutorial, Networking tutorial pdf, history of Networking, basic Networking, syntax use in Networking, networking training courses, networking tool kit, networking switch.

HTML Quizzes
CSS Quiz
CSS 1.0 Quiz
CSS 2.0 Quiz
XML Quizzes
XML Quiz
XSL Quiz
DTD Quiz
Schema Quiz
XForms Quiz
XLink Quiz
XQuery Quiz
XPath Quiz
XPointer Quiz
RDF Quiz
RSS Quiz
WAP Quiz
Web Services Quiz
Browser Scripting Quizzes
JavaScript Quiz
VBScript Quiz
WMLScript Quiz
E4X Quiz
Server Scripting Quizzes
ASP Quiz
SQL Quiz
ADO Quiz
CVS Quiz
Python Quiz
Apple Script Quiz
SQL Server Quiz
PHP Quiz
.NET (dotnet) Quizzes
Microsoft.Net Quiz
ASP.Net Quiz
.Net Mobile Quiz
C# : C Sharp Quiz
VC++ Quiz
Multimedia Quizzes
SVG Quiz
Flash Quiz
Media Quiz
Photoshop Quiz
Gimp Quiz
Matlab Quiz
Gnuplot Programming Quiz
GIF Animation Quiz
Scientific Visualization Quiz
Graphics Quiz
Web Building Quizzes
Web Browsers Quiz
Web Hosting Quiz
W3C Quiz
Web Building Quiz
Web Quality Quiz
Web Semantic Quiz
Web Careers Quiz
Weblogic Quiz
SEO Quiz
Web Site Hosting Quiz
Domain Name Quiz
Java Quizzes
Java Quiz
JSP Quiz
Servlets Quiz
Struts Quiz
EJB Quiz
JMS Quiz
JMX Quiz
Eclipse Quiz
J2ME Quiz
Programming Langauges Quizzes
C Quiz
C++ Quiz
Visual Basic Quiz
Data Structures Using C Quiz
Cobol Quiz
Assembly Language Quiz
Mainframe Quiz
Forth Programming Quiz
Lisp Programming Quiz
Pascal Quiz
Delphi Quiz
Fortran Quiz
OOPs Quiz
Data Warehousing Quiz
CGI Programming Quiz
Emacs Quiz
Gnome Quiz
ILU Quiz
Soft Skills Quizzes
Communication Skills Quiz
Time Management Quiz
Project Management Quiz
Team Work Quiz
Leadership Skills Quiz
Corporate Communication Quiz
Negotiation Skills Quiz
Database Quizzes
Oracle Quiz
MySQL Quiz
Operating System Quizzes
BSD Quiz
Symbian Quiz
Unix Quiz
Internet Quiz
IP-Masquerading Quiz
IPC Quiz
Software Testing Quizzes
Testing Quiz
Firewalls Quiz
SAP Module Quizzes
ERP Quiz
Business Warehousing Quiz
SAP Basis Quiz
Material Management Quiz
Sales & Distribution Quiz
Human Resource Quiz
Netweaver Quiz
Customer Relationship Management Quiz
Production and Planning Quiz
Networking Programming Quizzes
Corba Quiz
Networking Quiz
Microsoft Office Quizzes
Microsoft Word Quiz
Microsoft Outlook Quiz
Microsoft PowerPoint Quiz
Microsoft Publisher Quiz
Microsoft Excel Quiz
Microsoft Front Page Quiz
Microsoft InfoPath Quiz
Microsoft Access Quiz
Accounting Quizzes
Financial Accounting Quiz
Managerial Accounting Quiz
Testimonials | Contact Us | Link to Us | Site Map
Copyright ? 2008. Academic All rights reserved Privacy Policies | About Us
Our Portals : Academic Tutorials | Best eBooksworld | Beyond Stats | City Details | Interview Questions | Discussions World | Excellent Mobiles | Free Bangalore | Give Me The Code | Gog Logo | Indian Free Ads | Jobs Assist | New Interview Questions | One Stop FAQs | One Stop GATE | One Stop GRE | One Stop IAS | One Stop MBA | One Stop SAP | One Stop Testing | Webhosting in India | Dedicated Server in India | Sirf Dosti | Source Codes World | Tasty Food | Tech Archive | Testing Interview Questions | Tests World | The Galz | Top Masala | Vyom | Vyom eBooks | Vyom International | Vyom Links | Vyoms | Vyom World | Important Websites
Copyright ? 2003-2024 Vyom Technosoft Pvt. Ltd., All Rights Reserved.