Academic Tutorials



English | French | Portugese | German | Italian
Home Advertise Payments Recommended Websites Interview Questions FAQs
News Source Codes E-Books Downloads Jobs Web Hosting
Chats

Assembly Language
Introduction to Assembly
Assembly-Basic Concepts
Assembly Programming
Assembler language Instructions(1)
Assembler language Instructions(2)
Assembly Interruptions
Assembly Files
Assembly-Macros and procedures

HTML Tutorials
HTML Tutorial
XHTML Tutorial
CSS Tutorial
TCP/IP Tutorial
CSS 1.0
CSS 2.0
HLML
XML Tutorials
XML Tutorial
XSL Tutorial
XSLT Tutorial
DTD Tutorial
Schema Tutorial
XForms Tutorial
XSL-FO Tutorial
XML DOM Tutorial
XLink Tutorial
XQuery Tutorial
XPath Tutorial
XPointer Tutorial
RDF Tutorial
SOAP Tutorial
WSDL Tutorial
RSS Tutorial
WAP Tutorial
Web Services Tutorial
Browser Scripting
JavaScript Tutorial
VBScript Tutorial
DHTML Tutorial
HTML DOM Tutorial
WMLScript Tutorial
E4X Tutorial
Server Scripting
ASP Tutorial
PERL Tutorial
SQL Tutorial
ADO Tutorial
CVS
Python
Apple Script
PL/SQL Tutorial
SQL Server
PHP
.NET (dotnet)
Microsoft.Net
ASP.Net
.Net Mobile
C# : C Sharp
ADO.NET
VB.NET
VC++
Multimedia
SVG Tutorial
Flash Tutorial
Media Tutorial
SMIL Tutorial
Photoshop Tutorial
Gimp Tutorial
Matlab
Gnuplot Programming
GIF Animation Tutorial
Scientific Visualization Tutorial
Graphics
Web Building
Web Browsers
Web Hosting
W3C Tutorial
Web Building
Web Quality
Web Semantic
Web Careers
Weblogic Tutorial
SEO
Web Site Hosting
Domain Name
Java Tutorials
Java Tutorial
JSP Tutorial
Servlets Tutorial
Struts Tutorial
EJB Tutorial
JMS Tutorial
JMX Tutorial
Eclipse
J2ME
JBOSS
Programming Langauges
C Tutorial
C++ Tutorial
Visual Basic Tutorial
Data Structures Using C
Cobol
Assembly Language
Mainframe
Forth Programming
Lisp Programming
Pascal
Delphi
Fortran
OOPs
Data Warehousing
CGI Programming
Emacs Tutorial
Gnome
ILU
Soft Skills
Communication Skills
Time Management
Project Management
Team Work
Leadership Skills
Corporate Communication
Negotiation Skills
Database Tutorials
Oracle
MySQL
Operating System
BSD
Symbian
Unix
Internet
IP-Masquerading
IPC
MIDI
Software Testing
Testing
Firewalls
SAP Module
ERP
ABAP
Business Warehousing
SAP Basis
Material Management
Sales & Distribution
Human Resource
Netweaver
Customer Relationship Management
Production and Planning
Networking Programming
Corba Tutorial
Networking Tutorial
Microsoft Office
Microsoft Word
Microsoft Outlook
Microsoft PowerPoint
Microsoft Publisher
Microsoft Excel
Microsoft Front Page
Microsoft InfoPath
Microsoft Access
Accounting
Financial Accounting
Managerial Accounting
Network Sites


Basic Concepts


Previous home Next






Basic Concepts

Basic description of a computer system

A D V E R T I S E M E N T

This section has the purpose of giving a brief outline of the main components of a computer system at a basic level, which will allow the user a greater understanding of the concepts which will be dealt with throughout the tutorial.

Computer System

We call computer system to the complete configuration of a computer, including the peripheral units and the system programming which make it a useful and functional machine for a determined task.

Central Processor

This part is also known as central processing unit or CPU, which in turn is made by the control unit and the arithmetic and logic unit. Its functions consist in reading and writing the contents of the memory cells, to forward data between memory cells and special registers, and decode and execute the instructions of a program. The processor has a series of memory cells which are used very often and thus, are part of the CPU. These cells are known with the name of registers. A processor may have one or two dozen of these registers. The arithmetic and logic unit of the CPU realizes the operations related with numeric and symbolic calculations. Typically these units only have capacity of performing very elemental operations such as: the addition and subtraction of two whole numbers, whole number multiplication and division, handling of the registers' bits and the comparison of the content of two registers. Personal computers can be classified by what is known as word size, this is, the quantity of bits which the processor can handle at a time.

Central Memory

It is a group of cells, now being fabricated with semi-conductors, used for general processes, such as the execution of programs and the storage of information for the operations.

Each one of these cells may contain a numeric value and they have the property of being addressable, this is, that they can distinguish one from another by means of a unique number or an address for each cell.

The generic name of these memories is Random Access Memory or RAM. The main disadvantage of this type of memory is that the integrated circuits lose the information they have stored when the electricity flow is interrupted. This was the reason for the creation of memories whose information is not lost when the system is turned off. These memories receive the name of Read Only Memory or ROM.

Input and Output Units

In order for a computer to be useful to us it is necessary that the processor communicates with the exterior through interfaces which allow the input and output of information from the processor and the memory. Through the use of these communications it is possible to introduce information to be processed and to later visualize the processed data.

Some of the most common input units are keyboards and mice. The most common output units are screens and printers.

Auxiliary Memory Units

Since the central memory of a computer is costly, and considering today's applications it is also very limited. Thus, the need to create practical and economical information storage systems arises. Besides, the central memory loses its content when the machine is turned off, therefore making it inconvenient for the permanent storage of data.These and other inconvenience give place for the creation of peripheral units of memory which receive the name of auxiliary or secondary memory. Of
these the most common are the tapes and magnetic discs.

The stored information on these magnetic media means receive the name of files. A file is made of a variable number of registers, generally of a fixed size; the registers may contain information or programs.

Assembler language Basic concepts

Information Units

In order for the PC to process information, it is necessary that this information be in special cells called registers. The registers are groups of 8 or 16 flip-flops.

A flip-flop is a device capable of storing two levels of voltage, a low one, regularly 0.5 volts, and another one, commonly of 5 volts. The low level of energy in the flip-flop is interpreted as off or 0, and the high level as on or 1. These states are usually known as bits, which are the smallest information unit in a computer.

A group of 16 bits is known as word; a word can be divided in groups of 8 bits called bytes, and the groups of 4 bits are called nibbles.

Numeric systems

The numeric system we use daily is the decimal system, but this system is not convenient for machines since the information is handled codified in the shape of on or off bits; this way of codifying takes us to the necessity of knowing the positional calculation which will allow us to express a number in any base where we need it.

It is possible to represent a determined number in any base through the following formula:

Where n is the position of the digit beginning from right to left and numbering from zero. D is the digit on which we operate and B is the used numeric base.

Converting binary numbers to decimals

When working with assembly language we come on the necessity of converting numbers from the binary system, which is used by computers, to the decimal system used by people.

The binary system is based on only two conditions or states, be it on(1) or off(0), thus its base is two.

For the conversion we can use the positional value formula:

For example, if we have the binary number of 10011, we take each digit from right to left and multiply it by the base, elevated to the new position they are:

Binary: 1 1 0 0 1

Decimal: 1*2^0 + 1*2^1 + 0*2^2 + 0*2^3 + 1*2^4

= 1 + 2 + 0 + 0 + 16 = 19 decimal.

The ^ character is used in computation as an exponent symbol and the * character is used to represent multiplication.

Converting decimal numbers to binary

There are several methods to convert decimal numbers to binary; only one will be analyzed here. Naturally a conversion with a scientific calculator is much easier, but one cannot always count with one, so it is convenient to at least know one formula to do it.

The method that will be explained uses the successive division of two, keeping the residue as a binary digit and the result as the next number to divide.

Let us take for example the decimal number of 43.

43/2=21 and its residue is 1

21/2=10 and its residue is 1

10/2=5 and its residue is 0

5/2=2 and its residue is 1

2/2=1 and its residue is 0

1/2=0 and its residue is 1

Building the number from the bottom , we get that the binary result is
101011

Hexadecimal system

On the hexadecimal base we have 16 digits which go from 0 to 9 and from the letter A to the F, these letters represent the numbers from 10 to 15. Thus we count 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E, and F.

The conversion between binary and hexadecimal numbers is easy. The first thing done to do a conversion of a binary number to a hexadecimal is to divide it in groups of 4 bits, beginning from the right to the left. In case the last group, the one most to the left, is under 4 bits, the missing places are filled with zeros.

Taking as an example the binary number of 101011, we divide it in 4 bits
groups and we are left with:

10;1011

Filling the last group with zeros (the one from the left):

0010;1011

Afterwards we take each group as an independent number and we consider its decimal value:

0010=2;1011=11

But since we cannot represent this hexadecimal number as 211 because it would be an error, we have to substitute all the values greater than 9 by their respective representation in hexadecimal, with which we obtain:

2BH, where the H represents the hexadecimal base.

In order to convert a hexadecimal number to binary it is only necessary to invert the steps: the first hexadecimal digit is taken and converted to binary, and then the second, and so on.

Data representation methods in a computer.

ASCII code

ASCII is an acronym of American Standard Code for Information Interchange. This code assigns the letters of the alphabet, decimal digits from 0 to 9 and some additional symbols a binary number of 7 bits, putting the 8th bit in its off state or 0. This way each letter, digit or special character occupies one byte in the computer memory.

We can observe that this method of data representation is very inefficient on the numeric aspect, since in binary format one byte is not enough to represent numbers from 0 to 255, but on the other hand with the ASCII code one byte may represent only one digit. Due to this inefficiency, the ASCII code is mainly used in the memory to represent text.

BCD Method

BCD is an acronym of Binary Coded Decimal. In this notation groups of 4 bits are used to represent each decimal digit from 0 to 9. With this method we can represent two digits per byte of information.

Even when this method is much more practical for number representation in the memory compared to the ASCII code, it still less practical than the binary since with the BCD method we can only represent digits from 0 to 99.
On the other hand in binary format we can represent all digits from 0 to 255.

This format is mainly used to represent very large numbers in mercantile applications since it facilitates operations avoiding mistakes.

Floating point representation

This representation is based on scientific notation, this is, to represent a number in two parts: its base and its exponent.

As an example, the number 1234000, can be represented as 1.123*10^6, in this last notation the exponent indicates to us the number of spaces that the decimal point must be moved to the right to obtain the original result.

In case the exponent was negative, it would be indicating to us the number of spaces that the decimal point must be moved to the left to obtain the original result.


Using Debug program

Program creation process

For the creation of a program it is necessary to follow five steps:

Design of the algorithm, stage the problem to be solved is established and the best solution is proposed, creating squematic
diagrams used for the better solution proposal. Coding the algorithm, consists in writing the program in some programming language; assembly language in this specific case, taking as a base the proposed solution on the prior step. Translation to machine language, is the creation of the object program, in other words, the written program as a sequence of zeros and
ones that can be interpreted by the processor. Test the program, after the translation the program into machine language, execute the program in the computer machine. The last stage is the elimination of detected faults on the
program on the test stage. The correction of a fault normally requires the repetition of all the steps from the first or second.

CPU Registers

The CPU has 4 internal registers, each one of 16 bits. The first four, AX, BX, CX, and DX are general use registers and can also be used as 8 bit registers, if used in such a way it is necessary to refer to them for example as: AH and AL, which are the high and low bytes of the AX register. This nomenclature is also applicable to the BX, CX, and DX registers.

The registers known by their specific names:

AX Accumulator
BX Base register
CX Counting register
DX Data register
DS Data segment register
ES Extra segment register
SS Battery segment register
CS Code segment register
BP Base pointers register
SI Source index register
DI Destiny index register
SP Battery pointer register
IP Next instruction pointer register
F Flag register

Debug program

To create a program in assembler two options exist, the first one is to use the TASM or Turbo Assembler, of Borland, and the second one is to use the debugger - on this first section we will use this last one since it is found in any PC with the MS-DOS, which makes it available to any user who has access to a machine with these characteristics.

Debug can only create files with a .COM extension, and because of the characteristics of these kinds of programs they cannot be larger that 64 kb, and they also must start with displacement, offset, or 0100H memory direction inside the specific segment.

Debug provides a set of commands that lets you perform a number of useful
operations:

A Assemble symbolic instructions into machine code
D Display the contents of an area of memory
E Enter data into memory, beginning at a specific location
G Run the executable program in memory
N Name a program
P Proceed, or execute a set of related instructions
Q Quit the debug program
R Display the contents of one or more registers
T Trace the contents of one instruction
U Unassembled machine code into symbolic code
W Write a program onto disk

It is possible to visualize the values of the internal registers of the CPU using the Debug program. To begin working with Debug, type the following prompt in your computer:

C:/>Debug [Enter]

On the next line a dash will appear, this is the indicator of Debug, at this moment the instructions of Debug can be introduced using the following command:

-r[Enter]

AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0D62 ES=0D62 SS=0D62 CS=0D62 IP=0100 NV EI PL NZ NA PO NC
0D62:0100 2E CS:
0D62:0101 803ED3DF00 CMP BYTE PTR [DFD3],00 CS:DFD3=03

All the contents of the internal registers of the CPU are displayed; an
alternative of viewing them is to use the "r" command using as a parameter
the name of the register whose value wants to be seen. For example:

-rbx
BX 0000
:

This instruction will only display the content of the BX register and the Debug indicator changes from "-" to ":"

When the prompt is like this, it is possible to change the value of the register which was seen by typing the new value and [Enter], or the old value can be left by pressing [Enter] without typing any other value.

Assembler structure

In assembly language code lines have two parts, the first one is the name of the instruction which is to be executed, and the second one are the parameters of the command. For example: add ah bh

Here "add" is the command to be executed, in this case an addition, and "ah" as well as "bh" are the parameters.

For example:mov al, 25

In the above example, we are using the instruction mov, it means move the value 25 to al register.

The name of the instructions in this language is made of two, three or four letters. These instructions are also called mnemonic names or operation codes, since they represent a function the processor will perform.

Sometimes instructions are used as follows:

add al,[170]

The brackets in the second parameter indicate to us that we are going to work with the content of the memory cell number 170 and not with the 170 value, this is known as direct addressing.



Be the first one to comment on this page.




  Assembly Language eBooks
More Links » »
 
 Assembly Language FAQs
More Links » »
 
 Assembly Language Interview Questions
More Links » »
 
 Assembly Language Articles

No Assembly Language Articles could be found as of now.

 
 Assembly Language News

No News on Assembly Language could be found as of now.

 
 Assembly Language Jobs

No Assembly Language Articles could be found as of now.


Share And Enjoy:These icons link to social bookmarking sites where readers can share and discover new web pages.
  • blinkbits
  • BlinkList
  • blogmarks
  • co.mments
  • connotea
  • del.icio.us
  • De.lirio.us
  • digg
  • Fark
  • feedmelinks
  • Furl
  • LinkaGoGo
  • Ma.gnolia
  • NewsVine
  • Netvouz
  • RawSugar
  • Reddit
  • scuttle
  • Shadows
  • Simpy
  • Smarking
  • Spurl
  • TailRank
  • Wists
  • YahooMyWeb

Previous home Next

Keywords: assembly language,assemly instructions,assembly macros,assembly procedures,assembly interruptions

HTML Quizzes
HTML Quiz
XHTML Quiz
CSS Quiz
TCP/IP Quiz
CSS 1.0 Quiz
CSS 2.0 Quiz
HLML Quiz
XML Quizzes
XML Quiz
XSL Quiz
XSLT Quiz
DTD Quiz
Schema Quiz
XForms Quiz
XSL-FO Quiz
XML DOM Quiz
XLink Quiz
XQuery Quiz
XPath Quiz
XPointer Quiz
RDF Quiz
SOAP Quiz
WSDL Quiz
RSS Quiz
WAP Quiz
Web Services Quiz
Browser Scripting Quizzes
JavaScript Quiz
VBScript Quiz
DHTML Quiz
HTML DOM Quiz
WMLScript Quiz
E4X Quiz
Server Scripting Quizzes
ASP Quiz
PERL Quiz
SQL Quiz
ADO Quiz
CVS Quiz
Python Quiz
Apple Script Quiz
PL/SQL Quiz
SQL Server Quiz
PHP Quiz
.NET (dotnet) Quizzes
Microsoft.Net Quiz
ASP.Net Quiz
.Net Mobile Quiz
C# : C Sharp Quiz
ADO.NET Quiz
VB.NET Quiz
VC++ Quiz
Multimedia Quizzes
SVG Quiz
Flash Quiz
Media Quiz
SMIL Quiz
Photoshop Quiz
Gimp Quiz
Matlab Quiz
Gnuplot Programming Quiz
GIF Animation Quiz
Scientific Visualization Quiz
Graphics Quiz
Web Building Quizzes
Web Browsers Quiz
Web Hosting Quiz
W3C Quiz
Web Building Quiz
Web Quality Quiz
Web Semantic Quiz
Web Careers Quiz
Weblogic Quiz
SEO Quiz
Web Site Hosting Quiz
Domain Name Quiz
Java Quizzes
Java Quiz
JSP Quiz
Servlets Quiz
Struts Quiz
EJB Quiz
JMS Quiz
JMX Quiz
Eclipse Quiz
J2ME Quiz
JBOSS Quiz
Programming Langauges Quizzes
C Quiz
C++ Quiz
Visual Basic Quiz
Data Structures Using C Quiz
Cobol Quiz
Assembly Language Quiz
Mainframe Quiz
Forth Programming Quiz
Lisp Programming Quiz
Pascal Quiz
Delphi Quiz
Fortran Quiz
OOPs Quiz
Data Warehousing Quiz
CGI Programming Quiz
Emacs Quiz
Gnome Quiz
ILU Quiz
Soft Skills Quizzes
Communication Skills Quiz
Time Management Quiz
Project Management Quiz
Team Work Quiz
Leadership Skills Quiz
Corporate Communication Quiz
Negotiation Skills Quiz
Database Quizzes
Oracle Quiz
MySQL Quiz
Operating System Quizzes
BSD Quiz
Symbian Quiz
Unix Quiz
Internet Quiz
IP-Masquerading Quiz
IPC Quiz
MIDI Quiz
Software Testing Quizzes
Testing Quiz
Firewalls Quiz
SAP Module Quizzes
ERP Quiz
ABAP Quiz
Business Warehousing Quiz
SAP Basis Quiz
Material Management Quiz
Sales & Distribution Quiz
Human Resource Quiz
Netweaver Quiz
Customer Relationship Management Quiz
Production and Planning Quiz
Networking Programming Quizzes
Corba Quiz
Networking Quiz
Microsoft Office Quizzes
Microsoft Word Quiz
Microsoft Outlook Quiz
Microsoft PowerPoint Quiz
Microsoft Publisher Quiz
Microsoft Excel Quiz
Microsoft Front Page Quiz
Microsoft InfoPath Quiz
Microsoft Access Quiz
Accounting Quizzes
Financial Accounting Quiz
Managerial Accounting Quiz
Testimonials | Contact Us | Link to Us | Site Map
Copyright 2008. Academic Tutorials.com. All rights reserved Privacy Policies | About Us
Our Portals : Academic Tutorials | Best eBooksworld | Beyond Stats | City Details | Interview Questions | Discussions World | Excellent Mobiles | Free Bangalore | Give Me The Code | Gog Logo | Indian Free Ads | Jobs Assist | New Interview Questions | One Stop FAQs | One Stop GATE | One Stop GRE | One Stop IAS | One Stop MBA | One Stop SAP | One Stop Testing | Webhosting in India | Dedicated Server in India | Sirf Dosti | Source Codes World | Tasty Food | Tech Archive | Testing Interview Questions | Tests World | The Galz | Top Masala | Vyom | Vyom eBooks | Vyom International | Vyom Links | Vyoms | Vyom World
Copyright 2003-2014 Vyom Technosoft Pvt. Ltd., All Rights Reserved.